
A Unified Approach for Classroom and

Laboratory Control Systems Education

Zaher M. Kassas
∗

and Ricardo Dunia
∗∗

∗ Electrical and Computer Engineering Department, The University of
Texas, Austin, TX (e-mail: zkassas@ieee.org).

∗∗ Chemical Engineering Department, The University of Texas, Austin,
TX (e-mail: rdunia@che.utexas.edu)

Abstract: In this paper, a unified approach for control systems education will be presented.
This approach is a friendly software and hardware platform that provides students with the
necessary tools for gathering data for system identification, designing controllers, simulating
the closed-loop system, and implementing the controller on real-time hardware. The proposed
approach has been used in introductory control systems courses and can be easily extended to
advanced and research-based courses. Software-based classroom assignments and projects have
been presented based on this platform. Moreover, these classroom assignments and projects
were smoothly extended to hardware-based labs. The feedback conveyed by students due to
the incorporation of this platform into control engineering curricula has been positive. Also,
professors have been endorsing the use of this platform as part of teaching control systems
engineering.

Keywords: Education, Software Tools, CAD, Simulation, Real-Time Implementation,
Laboratory, Distributed Control

1. INTRODUCTION

Control systems engineers in the industry have been using
computer-aided control systems design (CACSD) for de-
sign, simulation, and implementation well before software
packages made their way to control systems engineer-
ing curricula. As these tools are becoming indispensable
for teaching control systems theory and applications, we
must ask: what are the important attributes of CACSD
tools for the academia? Some of the desired attributes
would entail such tools to have a steep learning curve,
provide a rich library of functions, and be interactive in
the sense that students may easily visualize the effects of
adjusting different parameters of a system on the overall
performance. Moreover, it would be ideal if such tools are
not only utilized in relevant industries, but also could be
straightforwardly “tailored” for classroom education. It
would be desirable if these tools adopt an open source code
methodology. Open source software makes a programming
language viewable, understandable, and adjustable to the
needs of its users.

The control system design process goes through a cycle
of modeling and system identification, controller design,
closed-loop simulation, and implementation (see Fig. 1) .
In this paper a CACSD framework for such cycle will be
presented. The framework is based on graphical program-
ming using LabVIEW. LabVIEW stands for Laboratory
Virtual Instrumentation Engineering Workbench, and
the LabVIEW code is referred to as a Virtual Instrument
(VI). A typical LabVIEW code consists of several blocks
(VIs), which are “wired together”. These wires carry the
data flow and convey the information among the different
blocks. The LabVIEW environment consists of two pro-

Fig. 1. Control System Design Cycle

gramming layers: a front panel and a block diagram. The
front panel is built with controls and indicators, which
are the interactive input and output terminals of the VI,
respectively. These terminals are used to communicate
data to and from the block diagram of the VI. The block
diagram contains the source code of the VI that is compiled
as the code is being developed.

LabVIEW has numerous built-in functions for conven-
tional programming, file and instrument input/output
(I/O), data communication, state charts, mathematics,
signal processing, system identification, control systems
design, and dynamic systems simulation, to name a few.
LabVIEW’s graphical nature makes it very attractive for
control systems education, in which block diagrams are
an indispensable tool to convey control systems theory
Keller [2003], Bebyo et al. [2003], Bishop [2006], Aradi
and Lipovski [2003]. LabVIEW also provides textual math
environments that could be embedded inside the graphical
programming interface as textual nodes. These nodes rep-



resents a textual editor inside the graphical block diagram,
in which equations can be defined, and an interface permits
the exchange of variables and results with the rest of
the graphical programming code. The “Formula Node”
accepts “C” syntax, whereas the “MathScript Node” ac-
cepts the standard syntax that is used in many control
engineering textbooks.

This paper is organized as follows. Section 2 introduces
some of the essential tools that are encountered in mod-
eling and system identification, control design, and sim-
ulation of the control system. Section 3 presents the role
of real-time (RT) implementation and distributed control
systems. Section 4 outlines the application of the pro-
posed framework on a three degrees-of-freedom (3DOF)
helicopter case study. Concluding remarks are discussed
in Section 5.

2. SYSTEM IDENTIFICATION, CONTROLLER
DESIGN, AND SIMULATION

This section will outline some of the essential tools that
are commonly encountered in the process of modeling and
system identification, controller design, and control system
simulation. These tools are available as libraries of VIs
in the System Identification and Control Design Toolkits
and Simulation Module in LabVIEW. The VIs in these
libraries are functionally organized into subpalettes as
illustrated in Fig. 2, 3, and 4. Students may use these VIs
as “building blocks” for modeling, system identification,
controller design, and simulation of the system under
study in open- and closed-loop configuration. Moreover,
students may view the underlying algorithms for such VIs
and customize them as necessary, while utilizing the rich
interactive programming environment of LabVIEW.

Fig. 2. System Identification Library Palette. Shown (ex-
panded) is the Recursive Model Estimation Sub-
palette.

Fig. 3. Control Design Library Palette. Shown (expanded)
is the Dynamic Characteristics Subpalette.

Fig. 4. Simulation Library Palette. Shown (expanded) is
the Continuous Linear Systems Subpalette.

First, the VIs in the System Identification Toolkit are
grouped into 10 categories that are functionally organized
into subpalettes, NI [August, 2006]. Some of the tasks that
can be accomplished with this toolkit include data pre-
processing, parametric model estimation, partially known
(grey-box) model estimation, recursive model estimation,
non-parametric model estimation, model validation, model
analysis, model conversion, model management, and vari-
ous utilities.

Second, the VIs in the Control Design Toolkit are grouped
into 12 categories that are functionally organized into sub-
palettes, NI [August, 2007a]. Some of the tasks that can be
accomplished with this toolkit include model construction;
gathering model information; model conversion; model in-
terconnection; time response; frequency response; dynamic
characteristics; model reduction; state-space model analy-
sis; state-feedback design; stochastic systems; controller,
observer, and Kalman filter implementation; proportional-
integral-derivative (PID) design; model-predictive control
(MPC); and solvers for commonly encountered equations
(e.g. Lyapunov, Riccati, integrals involving matrix expo-
nentials, etc).

Third, the VIs in the Simulation Module are grouped into
12 categories that are functionally organized into sub-
palettes, NI [August, 2007c]. The left uppermost entry in
this palette is the Simulation Loop. All VIs that are placed
inside a Simulation Loop will be executed recursively based
on prescribed simulation parameters. These parameters
dictate how the loop is executed by solving an ordinary
differential equation (ODE) using a specified continuous
time solver or by solving a difference equation at specified
discrete-time steps. Moreover, individual VIs inside the
Simulation Loop maybe configured to run at discrete or
continuous time-steps or to run at the initial or final time-
steps only (see Fig. 5).

Moreover, the timing behavior of the Simulation Loop
can be set into software or hardware timing source. If
a software timing source is specified, the time steps of
the simulation execute as fast as the computer hardware
permits. If a hardware timing source is specified, the major
time steps execute at the periodic rate that timing source
specifies. Moreover, we may specify whether the VIs inside
the Simulation Loop will run either as continuous-time
blocks, as discrete-time blocks, at the initialization step
only, or at the final step only.

Some of the tasks that can be accomplished with this mod-
ule include implementation of continuous linear systems,
implementation of nonlinear systems, implementation of



Fig. 5. Simulation Loop Parameters

discrete linear systems, signal generation, signal arith-
metic, lookup tables, graph utilities, trim and linearize,
optimal design, and RT implementation of state-feedback
controllers, observers, and Kalman filters.

3. REAL-TIME IMPLEMENTATION AND
DISTRIBUTED CONTROL

A real-time (RT) control application repeatedly performs
user-defined tasks with a specified elapsed time between
the operations. There are different ways to describe an
RT control application, such as control loop cycle time,
determinism, and jitter. Determinism measures the con-
sistency of the specified time interval between the user-
defined tasks. Jitter measures the amount of time (error)
that the loop cycle time varies from the desired time. Jitter
can be measured as the maximum difference between any
individual actual time delay and the specified time delay
of a system. The RT operating system (RTOS) guarantees
operation within a time-bounded amount of jitter. If the
jitter is not time-bound, the control system may suffer
from instability as the control algorithm is typically calcu-
lated assuming a predetermined fixed time interval. Such
a difference between the fixed time interval and the actual
time interval leads to performance degradation.

In a number of control systems applications, the control
system is usually distributed across multiple computa-
tional platforms communicating over a closed network.
Distributed control systems (DCSs) are found in many
control systems application including those applications
where the control system is used in manufacturing in-
dustries, such as industrial motion control and precision
machine control; and those applications where the control
system is embedded into a larger system, such as auto-
motive or flight systems. The computational and network
communication delays can degrade the performance of the
control system and should be taken into account when
implementing DCSs. Consequently, it is crucial that con-
trol systems students have exposure to simple DCS cases
in laboratory experiments to demonstrate the fact that

“classical” control systems designed by “pencil-and-paper”
behave differently when implemented in a DCS fashion.

Many discrepancies between simulated and implemented
control systems are due to modeling errors (structure or
parameter uncertainty), truncation errors (in the compu-
tational platform where the controller is deployed), and
timing errors (added/reduced delays and jitter due to
RTOS or the lack of).

A simple DCS experimental platform is depicted in Fig.
6. In this platform, the plant, sensors, estimator, and

Estimator

Controller Plant

Sensor

x̂ u

y

∆1

∆2

∆3

Fig. 6. Distributed Control Illustration

controller may be distributed in different configurations to
emphasize different system behavior. Such configurations
could be

• Plant, sensors, estimator, and controller all on one
computational platform. This is the most straightfor-
ward “classical” configuration used in most control
labs. Here, the communication delays ∆1, ∆2, and
∆3 maybe ignored.

• Plant and sensors on one computational platform and
controller and estimator on another, i.e. the DCS
is partitioned across the dashed line. Here, the I/O
delays ∆1 and ∆2 effects may be significant and worth
studying.

• Plant, sensors, and estimator on one computational
platform and controller on another, i.e. the DCS is
partitioned across the dotted line. Here, the delays
∆1 and ∆3 may be significant. In such configuration,
students may exploit the predictive observer or the
Kalman filter concepts to account for such delays.

• Plant and sensors on one computational platform,
estimator on another, and controller on a third one.
Here, delays ∆1, ∆2, and ∆3 are all present and
maybe significant. Their effects can be studied with
this framework.

On the computational platform, it is imperative that all
the operations it performs are deterministic or can be pre-
empted by higher priority operations. With DCSs, there
needs to be a communication mechanism to distribute data
between each node in the network. Most communication
methods such as TCP/UDP, serial, etc. are intrinsically
not deterministic. As such, many DCSs will turn to a
hardware solution like distributed shared memory (reflec-
tive memory) boards for a solution. In LabVIEW, there
is a software mechanism (the shared variable) that can be
used to guarantee deterministic communication between
nodes in the DCS, NI [August, 2007b]. The LabVIEW
shared variable can be easily configured in two different
modes when applying a DCS. First, we can use a network-
published shared variable with an RT first-in-first-out



(FIFO) to share data between a VI running on an RT
target and a host computer that is acting as a human ma-
chine interface (HMI) without affecting the determinism of
the VI. Second, we can use time-triggered shared variables
to transfer data across a network deterministically using a
network card. When using time-triggered shared variables
to share data across a time-triggered network, current
NI hardware and software can close deterministically a
network loop at rates approaching 5 kHz.

4. CASE STUDY

This section will illustrate the use of the proposed frame-
work for system and parameter identification, control sys-
tem design, simulation, and controller implementation on
a Quanser 1 3DOF helicopter. Fig. 7 illustrates the hard-
ware used in the lab, where encoders and two voltage
amplifiers are connected to the helicopter to measure the
outputs and apply the control action to the system under
study. The RT execution is accomplished on a PXI RT
controller, and a laptop is used for control design and off-
line simulation of the system as well as serving as the host
machine (HMI) in the RT system.

Fig. 7. 3DOF Helicopter System Lab

The helicopter system is modeled as a nonlinear dynam-
ical system with two inputs, represented by the voltages
applied to the front and back motors; three outputs that
define the elevation, travel, and pitch of the helicopter; and
six states: the elevation angle (α), the pitch angle (β), the
travel angle (γ), and their respective first derivatives. The
friction parameters are denoted by fi, where i represents
a state or degree of freedom for the system. The set of
nonlinear differential equations governing the dynamics of
the helicopter are given by

Jeα̈= [(Ff + Fb)cos(β) −m2g] l2cos(α)

+m1g [l0cos(ψ) + l1cos(α)] − fα(α̇) (1)

Jpβ̈ = (Fb − Ff )cos(β)l − fβ(β̇) (2)

Jeγ̈ = (Ff + Fb)sin(β)l2cos(α) − fγ(γ̇). (3)

The table above provides the physical parameters of the
system. The nominal operating values for all the output

1 www.Quanser.com

Parameter/State Description

Je Inertia at elevation-travel axis
Jp Inertia at pitch axis

Ff , Fb Front and back motor forces
Vf , Vb Front and back motor voltages
m1 Counter weight mass
m2 Helicopter mass
ψ Counter weight deflection

l0, l1 Counter weight distances to pivot
l2 Helicopter distance to pivot
l Motor distance to pitch
α Elevation angle
β Pitch angle
γ Travel angle
g Gravity constant

fx(ẋ) friction term for state x

angles is zero degrees. An Input of 0.45 Volts is required
on the back (Vb) and front (Vf ) motors to keep the
helicopter flying at zero elevation. The voltage difference,
Vb − Vf , provides a pitch angle that affects the travel of
the helicopter.

All the numerical values for the parameters in Table 1 are
known, except for the friction terms. In order to identify
these parameters, grey-box parametric identification is
required. In this respect, the structure of the nonlinear
model of the helicopter is known. The students determine
the optimal estimates of the friction parameters utilizing
I/O data. Since the helicopter system is open-loop un-
stable, a basic PID controller was implemented and the
PID gains were tuned to stabilize the system and gather
the data for grey-box parametric identification. The I/O
data representing the stimulus/response signals were saved
into files. In this stage of the experiment the students are
exposed to non-model-based control systems techniques.
These techniques are embraced by a good number of in-
dustries to achieve feedback control. Fig. 8 illustrates the
block diagram for the grey-box parametric identification.
Here, the “Estimate Parameters” VI takes the following
inputs: the stimulus/response signals from the saved files,
the initial estimates of the friction terms along with their
lower and upper limits, and a path to a file that contains
the model of the system over which we apply grey-box
parametric identification. The model in this case consists
of the closed-loop system, which contains the helicopter
system with the PID controller. The helicopter model file
is illustrated in Fig. 9. Here, the nonlinear differential
equations (1)-(3) governing the dynamics of the helicopter
were included into the “Formula Node”. Input and output
terminals were created around this node in order to pass
and retrieve results from this textual math environment.

Once the numerical values of the friction parameters have
been identified, the students linearized the system de-
scribed in (1)-(3) using the linearize tool in the Simulation
Module. A linear representation based on a numerical
approximation of the open-loop system around nominal
operating conditions is obtained by simply selecting the
file that contains the nonlinear dynamical expressions. The
tool that calculates the linearized system also allows to
preset the nominal conditions around which the nonlinear
subsystem should be linearized. It also permits to fix some
inputs, outputs, or states while the linear system is being
estimated.



Fig. 8. Block Diagram for Grey-Box Parametric Identifi-
cation

Fig. 9. Nonlinear Model for 3DOF Helicopter

Once the linearized model was obtained, students were
able to analyze open-loop stability, controllability, and
observability of the system. The state-space (SS) linear
system was converted to a transfer function (TF), and
both were visually rendered. Fig. 10 shows the front panel
for this model analysis stage.

Fig. 10. Front Panel for Linearized System Analysis

Control design methods can be made interactive in Lab-
VIEW, i.e. step-response plots and closed-loop specifica-
tions can be calculated as the controller parameters are
adjusted without stopping the program execution. In this
illustration, it was desired to have a step-response with

overshoot ≤ 5% and settling time ≤ 5 seconds. The root-
locus method was first used to design a controller to
meet the desired closed-loop response specifications. These
specifications were met by employing a PID controller. Fig.
11 illustrates the block diagram for model analysis and
controller design using the root-locus and PID methods.
Fig. 12 shows the interactive front panel. Is is important
to mention that these tools are interactive in the sense
that students can visualize the effect of each controller
parameter in the time response plot.

Fig. 11. Block Diagram of Linearized System Analysis and
Controller Design

Fig. 12. Front Panel of Interactive Root-Locus and PID
Tuning

Next, a more advanced controller was designed in the
lab based on optimal control theory. In this respect, the
continuous-time helicopter model was discretized, based
on a desired sampling time, and a Linear Quadratic Reg-
ulator (LQR) controller was designed. The helicopter sys-
tem was simulated off-line inside the Simulation Loop
along with the controller to “mimic” the closed-loop sys-
tem behavior. Since not all the system states were mea-
surable, an observer was used to estimate the states for
state-feedback control. In order to have a more realistic
“feel” of the controlled helicopter simulation, the Picture



Fig. 13. Front Panel of Simulation of 3DOF Helicopter System with LQR Control and Predictive Observer

3D Toolkit was used. The Picture 3D Toolkit consists of a
set of functions that allow the modeling and rendering of
three-dimensional (3D) scenes for advanced visualization
in LabVIEW. This toolkit has a library to build and
animate 3D scenes, as well as import 3D objects from ASE,
STL, and WRL file formats. Fig. 13 illustrates the front
panel for the simulation and Fig. 14 illustrates the block
diagram for the observer design, LQR controller design,
and closed-loop system simulation.

Fig. 14. Block Diagram of 3DOF Helicopter System simu-
lation with LQR Control and Predictive Observer

Finally, the students implemented the controller in RT
using the actual helicopter hardware. In this respect,
DAQmx was used for data acquisition and control action
applications. The sampling time used in model discretiza-
tion has been chosen according to the DAQmx sampling
rate and execution rate of the Simulation Loop. The sim-
plicity and clearness with which we transition from off-line
simulation of the helicopter system to RT implementation
can be visualized in Fig. 15. In such case, the state-space
subsystem that was simulating the plant behavior has been
disconnected and replaced by I/O read/write DAQmx VIs.

5. CONCLUSION

This paper presented a framework for teaching control
systems students how to apply the control design cycle
presented in Fig. 1 in a methodological sequence. The
framework provided simple tools to perform all the tasks
associated with such a design cycle. Furthermore, the
framework was friendly, interactive, and easy to configure.

Fig. 15. Block Diagram of Real-Time Implementation of
LQR Controller with Predictive Observer

The application of this framework to a 3DOF helicopter
system for system identification, analysis, control design,
simulation, data acquisition, and RT implementation has
shown the advantages of using this platform for the control
design cycle. This platform allowed the students to focus
on the academic control concepts, while reducing the
typical overhead spent configuring software and hardware.
These software tools can be readily extended to teaching
more advanced topics such as nonlinear and adaptive
control systems, Kalman filtering, and distributed control
systems.

REFERENCES

P. Aradi and G. Lipovski. Labview as a teaching aid
for control engineering. IFAC Advances in Control
Education, pages 321–326, 2003.

I. Bebyo, G. Lipovski, and J. Kovacs. Advanced con-
trol: Simulation tools in labview environment. IFAC
Advances in Control Education, pages 237–241, 2003.

R. H. Bishop. LabVIEW 8 Student Edition. Prentice Hall,
2006.

J. Keller. Interactive control system design. IFAC Ad-
vances in Control Education, pages 333–328, 2003.

NI. LabVIEW System Identification Toolkit User Manual.
National Instruments, August, 2006.

NI. LabVIEW Control Design Toolkit User Manual. Na-
tional Instruments, August, 2007a.

NI. LabVIEW Help, Real-Time Module. National Instru-
ments, August, 2007b.

NI. LabVIEW Simulation Module User Manual. National
Instruments, August, 2007c.


