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Abstract—Path planning for a ground vehicle in an urban satellite systems (GNSS) [3]. Integrity monitoring can be
environment is considered. The vehicle is equipped with a GP established through the GNSS navigation message to iedicat
receiver and a road map. The vehicle desires to take the gate|lite anomalies, such as clock errors. However, tis tf
shortest path to reach a target destination, while guaranteing . . Lo . . .
that integrity monitoring-based measures are satis ed alag its '”teg”ty monitoring Is not pra(?t'cal_for real-time appiions, .
traversed path. A path planning algorithm is proposed that as it takes a few hours to |dent|fy and broadcast satellite
yields the optimal path to follow as well as suboptimal feasile failure. As such, alternative methods have been developed f
paths. The integrity monitoring-based measure consideredn real-time integrity monitoring. These methods can be aateg
this paper is the horizontal protection level (HPL), which refers rized into internal and external. On one hand, integrity can
to the statistical bound around the vehicle that guaranteeshe . . ’
probability of the absolute position error exceeding a desed be eSIab“S_hed using external methOdsj such as grou.nd-base
threshold is not larger than the integrity risk. Experimental —augmentation systems (GBAS) or satellite-based augmentat
results are presented showing that choosing the optimal pht systems (SBAS) using reference receivers. On the other, hand
from the proposed algorithm reduces the average and maximum integrity can be established using internal methods, such
HPL by 2 m and 20.2 m, respectively, compared to choosing the o5 receiver autonomous integrity monitoring (RAIM) using

shortest-time path, while introducing a negligible additional path redundant information present in the measurements. RAIM

length. : . b
Index Terms—Navigation, ground vehicle, integrity, receiver inherently possesses desirable characteristics for grbased
autonomous integrity monitoring, path planning, GPS. receivers, and its design exibility is well suited for ngution
in urban environments. Moreover, RAIM can be used to
. INTRODUCTION generate the integrity monitoring measures, such as giatec

The U.S. National Highway Traf ¢ Safety Administration'€vels (PLs), which are statistical error bounds computed s

(NHTSA) reported that in 2018, there were more than 36,066 0 guarantee that the probability of the absolute pasitio
traf ¢ fatalities, 1.8 million injuries, and 6.7 million @shes ©rror exceeding a certain threshold is smaller than or emual
in the U.S. [1], with about 94% of crashes being attributed @ target integrity risk [4]. _
human error. Autonomous ground vehicles have the potentiaGNSS satellite visibility degrades in deep urban canyons
to dramatically reduce vehicle collisions due to humanresyo @nd the received signals suffer from multipath and non-line
reducing the number of humans behind the driving wheel. F8fSight (NLOS) conditions. To overcome the limitations of
reliable autonomous or semi-autonomous driving, the vehiGNSS, fusing GNSS receivers with other sensors [5]-{10]
needs to be equipped with extremely reliable and accur&@d signals of opportunity (SOPs) [11]-[16] is commonplace
local and global sensing modalities to sense the surrogndift€grity monitoring for multi-sensor and multi-signaliga-
environment and localize the vehicle within a global magion Systems has been the subject of numerous studies. This
This cannot be achieved without continuously monitoringy tHn¢ludes the fusion of (i) GPS, inertial measurement units
integrity of the navigation solution provided by the velis| (IMUS), wheel speed encode.rs_,__and cameras [17]; ('!) GPS
navigation system. Integrity monitoring refers to the ipibf 2nd map-matching [%8]* [19]; (i) GPS and lidar [2011 (iv)
the navigation system to provide timely warnings when tH&NSS and IMU [21]; (v) G_NSS’ lidar, and IMU [22]; (vi)
information given by its on-board sensors is not trustwprthSOPs and GNSS [23], [24]; and (vii) SOPs [25], [26].
A high-integrity navigation system must be able to detect an Path planning has been considered in recent literature to
reject incorrect measurements [2]. account for various sources of uncertainty (e.g., enviremtal
The concept of integrity was rst formalized in the eld [271-[29], sensing [30], [31], etc.). Predicting GNSS sign
of aviation, which is highly dependent on global navigatioROWer and availability was proposed in [32]-[34]. Such fred
tions could be useful for path planning purposes. The obgect
of path planning is to optimize a cost function, such as path

This work was supported in part by the by the National Scidfmendation Iength or path duration between a start and a target ddstinat
(NSF) under Grant 1929571 and Grant 1929965 and in part bpfle of

Naval Research (ONR) under Grant NO0O14-19-1-2613 andt@¢aeo14- Fath planning to optimize the path length, while taking into
19-1-2511. account the accuracy of the vehicle's estimated positiomfr



GNSS and SOPs has been considered [35]-[38]. HoweverThe pseudoranges made by the vehicle's mounted receiver
to the author's knowledge, path planning in the context @n them-th GPS satellite are given by

integrity monitoring has not been studied yet. To this end, _, _

this paper considers path planning to minimize the veticle' “GPSm (k) =kre(k) rees, (K)K,

path length, while upper bounding the vehicle's horizontal +c [te(k) teps, (K)]+ Veps, (K);
protection level (HPL) to be less than a pre-de ned thredholWherek is the time-stepz? . c ot c
which is known as the horizontal alert limit (HAL). As such, . and t Gpgrme the GF;)Ssm't'on andlotr:]i)ock bias
the proposed framework assures safe operation by prasgribi,"P° * _ SPSm GPSm POSIt I

a path through which HPL is restricted to the largest alldwab> €S of then-th GPS satellite, respectivelyiiono and t wop

error set by the integrity monitoring system, are the ionospheric and tropospheric delays, respectigaly

This paper considers the followin roblem. A roungGPSm is the measurement noise, which is modeled as a zero-
nIS paps : ving pro A9 mean white Gaussian random sequence with variaggg .
vehicle equipped with a GPS receiver navigates in an urbanT o m
: . . he vector of measurements to 8l satellites is de ned
environment. The vehicle-mounted receiver makes pseudgr-
ange measurements to multiple GPS satellites. The vehicte

0o ..... 0
is also equipped with a road map of the environment. The Z, ZGpPsyi - ZGPsy

path planning engine uses the road map to predict the HRhe vehicle-mounted receiver's state vector is estimagiuoigu

at different locations of the path at different times. Gitee \WNLS. The measurement model is linearized according to
start and the target points, the path planning engine pbescr
a path that minimizes the vehicle's path length and HPL, z=H X/ +v;

while satisfying the constraint of HPL being less than HALyhere 7z | z 2 is the difference between the measurement
The path planning engine also outputs other feasible paiistorz and its estimaté, x,, X, %, is the difference

the vehicle could take. These feasible, suboptimal pates @stween the receivers's state vectar and its estimateR ,
useful when the vehicle chooses not to follow the optimal,qy Vops, i Veps ]T The measurement Jacobian is
; R wl -

path, for example, to avoid traf ¢ jams due to construction o

emergency. For simplicity of this preliminary study, thisger 5' : 3

does not consider GPS multipath or NLOS conditions. celeps,)S@zZeps,)  CElops,)C@zZeps,) Selops,) 1
The contributions of this paper are as follows. First, thi . . . .

paper introduces a method to calculate HPL throughout all : : . .

possible paths using the road map. Second, this paper gepos CElersu)s@Zeps,) CElops, )c@zeps,) SEleps,) 1

a path planning method that is based on Dijkstra's algorithm

[39], which considers the path length as well as integritynmo

T

o . . . where elgps,, and azgps, are the elevation and azimuth
itoring constraints. Third, experimental results are présd angles of them-th GPS satellites, respectively, expressed in

validating the ef cacy of the proposed framework. It is show !
that choosing the optimal path prescribed by the proposgc? East, North, Up (ENU) local coordinate frame, centetted a

framework reduces the average and maximum HPL by 2 m a(g(? receivers position. In the above equatieq) and )

20.2 m, respectively, compared to choosing the shortew-ti Wee?olf?taintherzz_fri?(ni?’]Stlf?eﬂ\j/r\}(li]tll_osn S|s rsr?c?sesgvgéy.th'zniilxl/)grstzeof
path, while introducing a negligible additional path lemgt ghting

. . . the measurement noise covariance
The paper is organized as follows. Section Il presents

the navigation framework and the HPL calculation. Section R =diag Zps,;ii; &ps, |
lll presents a step-by-step summary to extract the requireﬁ
information from the road map and formulates the vehiclé pa‘fv
planning algorithm. Section IV presents experimental ltl8SUB. HPL Calculation
and analyzes the performance of the proposed framework
Section V gives concluding remarks.

erediag() denotes a diagonal matrix.

The RAIM algorithm provides the user with an estimate of
the con dence in the position information via HPL. Moreoyer
RAIM detects the presence of a fault in the measurement by
formulating a hypothesis test on a residual test statitic.

A. Navigation Framework [40], it was shown that the RAIM-based test statistic fokow

This subsection formulates the navigation framework. -”?ecentral and noncent.ral chl—squargd distributions unaiit-f
environment is assumed to comprisé GPS satellites, to '€ and faulty operations, respectively.

which the vehicle-mounted receiver makes pseudorange meal order to calculate the position error, RAIM establishes a

surements, denotetizaps gm:l  These measurements arénapping b_etween _the error in th_e p(_)sition domain and in the
fused through a weighted nonlinear least-squares (WNL| t statistic domam._ This mapping is callesidpe’ [2] and
estimator Tto estimate the receiver's state vecigr |, is"formulated accordrlJng to

relicte , wherecis the speed of lightir , [Xr; yr; zr]_T obe = (B1i)? + (B2i)? i Rii

is the receiver's position, and ; is the receiver's clock bias. slopg = PS5 ;

II. NAVIGATION FRAMEWORK AND HPL CALCULATION




whereB , HTR 'H 'HTR 1S, | HB,andX;
denotes the element oth row andj -th column of a matrixX .
The slopeis usually computed for each satellite individuall
denoted byslope for thei-th GPS satellite. When the slope
are large, the position error becomes more sensitive to
error in the test statistic, making the RAIM system lessljike &

Export the road data from the

to detect a fault. Therefore, an important quantity to stisdy & digital map ;
the maximum slope, denotesfopenax, to which the HPL is 4 it S~ (osmle) ¢
proportional, i.e., @ | © ]
P— M . ieeesessssssassees R [ —
HPL = slop€may  det;  SlOPGnax =max fslopggiz, ; | ! | Extractthenode : o
. . . . i Construct the icoordinates and road
where qe; is the non-centrality of the test statistic chi-square connectivity =~ with "highway" tag .
distribution under a faulty operation that results in a pré....morX i i _inthedatabase ;| 4
de ned probability of mizssed detectioPyp according to l O] @
Th
Pwo = . fam ()d; ) m:,.v, k 5
wheref 2. .., represents the non-central chi-squared pdf with | fe
d degrees of freedom and non-centrality parametgs , and — ool
Th is the threshold for th% test statistic and is obtained from > Jarget . .
l 0‘ 2000 4000 6000 BOOb
. Nodes
Pra = . fa()d; ) 0 ©

wherePg, is the probability of false alarm arfd : is the test Fig- 1. Steps to extract path planning related data from #adlignap: (a)

L. . d. The navigation environment, (b) OSM digital map, (c) exjpgrtthe “.osm”
statistic chl-squared pdf under fault-free condition [26] le, which contains road data, (d) MrLAB-based parser to extract nodes

and roads data from the “.osm” le, (e) processing the digitap, including
. PATH PLANNING constructing the connectivity matrix, (f) the extractedies and road overlaid
A. Road Map Generation on the map, and (g) the connectivity matrix.

To extract road data for path planning, a digital map has
been used, which covers the city of Irvine, California, USAg  path Planning Engine
and is developed based on the Open Street Map (OSM

. . . he path planning generation step prescribes an optimal
?haatﬁlzgiteriéﬁtle]).agtjsmaliit:ilrjlll:og)(;satr(;(i)lrsnrglriglté\ilg\fl a;;&pergath for the vehicle to follow. This subsection describes th

steps to determine the optimal path between a start and targe

information. A MATLAB -based parser was developed to SXodes on the digital map. The optimal path is one that acsount
tract the road coordinates. The elevation pro le of the roafdo 9 P b P

was obtained using Google Earth [42]. TheaAB -based or the shortest path length and for the HPL. To account for

parser outputted the coordinates of the nodes (i.e., tleaetstrb()th HPL and path length, the optimization cost function is

junctions), the roads, and the connectivity matrixwhich is chosen t(.) be the sum of the HPL. along the path, mul'Flplled
de ned according to by the distance between two adjacent nodes. The distance

is explicitly considered in the cost function because only
1 if there exists a road between nodeand]j including HPL could result in lengthy paths, e.g., pathg tha
0 otherwise require the vehicle to leave and re-enter the urban envieoitm

. . . Fig. 2 summarizes the block diagram of the path planning
Fig. 1 summarizes the steps to extract path planning relat&r&gine with the corresponding inputs and outputs.

dat"?‘ from ? g.'g'til bm?jp. F'g't 1§a) tshhows the naVI_gagoSn ormally, a path from the start to the target nodes is denoted
environment. Fig. 1(b) demonsirates the same area in P, whereP is the set of all paths. The pathis composed

dgtabase, which is downloadable from the OSM website [4jolfda sequence of nodes indices between the start node index
Fig. 1(c)-(e) show the steps to process the map data dand the targep,, namely = fps:py:ps:::::peg. The

to extract the nodes, roads, and the connectivity matrig. Fij . oo oo problglin is expressed as, hert e

1(f) show the extracted nodes and road overlaid on the ma;g) X

o=

This area contains 8,368 nodes and 1,472 roads, which are minimize dist(p) HPL (p;t) 3)
; : . : . 2P

illustrated with red circles and blue lines, respectivein p2

example of the path between two sample points is depicted subject to HPL (p;t) HAL

in Fig. 1 (f). This path, , contains 8 nodes, labeled as

= 464236112234 30,31, 114 118y wheredist(p) is the length of the road network between node
Finally, Fig. 1(g) illustrates the connectivity betweeilffelient p and its adjacent node attlP L (p;t) is the predicteddPL
nodes. in nodep at timet.



Algorithm 1: Path Planning Algorithm

RAM | ! HAL 1
constants] § : Input: G, s, g, S, andf (; )
) 1 Output: d(g) and (Q)
1 1 Find 2 V that minimizesd( )
Time ! 2 For each adjacent to
: s Ifd( )+ f(; )<d(),
| 4 d( )=d( )+ f(; )
GPS ! 5 p =
signals : 6 End if
Start E 7 End for
node 1 8 V VvV f g
Target ' ) 9 S S+f g
node Presg{;‘lbecl 0IlfS6 va
Central computer 1 G_Oto Step 1
12 End if

Fig. 2. The block diagram of path planning engine with theregponding
inputs and outputs.

o . . E i tal Set ds ioD ipti
The optimization problem in (3) resembles the problem 6Af xperimental Setlp and scenario Description

nding the shortest path in a weighted graph, in which the A Vehicle was equipped with a Septentrio AsteRx-t V

roads are the edges of the graph and the cost function integrated GNSS-IMU module, which is equipped with a dual
X antenna, multi-frequency GNSS receiver and a Vectornav VN-

f(; )= dist(p) HPL (p;t); (4) 100 micro-electromechanical system (MEMS) IMU. This in-

P2P(; ) tegrated GNSS-IMU system was used to produce the vehicle's

determines the weight of the edge that connects the nage 9round truth path. The GNSS receiver also produced GPS

. Based on the constraints in (3)HP L (p; t) exceeds HAL pseudorange measurements, which were used to construct the

forp2 P(; ), then the edge is removed from the graph. THPL as discussed in Subsection 1I-B. The experimental setup

solve the optimization problem expressed in (3), Dijkstrais shown in Fig. 3.

algorithm is employed, which is a classic algorithm to nd

the shortest path between two arbitrary nodes of a weighted

graph. Dijkstra's algorithm is readily implementable, foems

stably, and has acceptable complexity. The proposed #igori

is implemented as follows. Assume that the vehicle is dgvin

in a region consisting afi nodes andv roads. This region can

be modeled by a simple gragh= ( nh;w), which consists of

n nodes andv edges. The path planning cost functiop; )

assigns a non-negative real number weight to the edge from Mult frequency Multi-frequency

tothe in G. De ne s to be the start node from which the GNSS antennp

vehicle begins drivingg to be the target node, ard{g) to

be the weight related to the path fragto g. Let S denote nigraied

the set of visited nodes by the vehicle avddenote the set GNSS-IMU

of unvisited nodes. Given a path in G determined by the

algorithm, , denotes the predecessor of nodeThe path

planning is initialized as follows AsteRx

d(s)=0

For each node adjacent tos, setd( ) = f(s; ) and

=s
p

For each node such that 6 s and is not adjacent Storagd ool

tos,setd( )=1

S=fsg

. . Fig. 3. Experimental setup. Vehicle used to conduct the raxypat, which
. Ne)_(t’ the Path plannlng algorlthm executes the steps OHES equipped with the AsteRx-i®% GNSS-IMU module and a laptop for
lined in Algorithm 1. storage and processing.
IV. EXPERIMENTAL RESULTS The experiment was conducted in California, USA. The start

This section evaluates the efcacy of the proposed papoint was chosen in Costa Mesa, California, USA, while the
planning algorithm experimentally on a ground vehicle. target point was chosen in Irvine, California, USA. The RAIM



Path 1 (shortest traversed time) Path 3
Traverse time: 15 minutes

Start time: 9:23am, 1/22/2020

Traverse time: 26 minutes
Start time: 9:15am, 1/24/2020

Path 4
Traverse time: 16 minutes

Start point
Costa Mesa, California

Path 2 (prescribed path) Path 4
Traverse time: 17 minutes Traverse time: 16 minutes
Start time: 9:19am, 1/23/2020 Start time: 9:11am, 1/25/2020

Fig. 4. The experimental results along the shortest pathptiescribed path, and two other possible paths betweentdhteasd target points. For a fair
comparison, four drive tests took place in four successayes dnd the start time of the tests were chosen properly tagiege the same satellite con guration
at the beginning of each test.

settings werePyp = Pga = 0:005 and HAL = 70 m. 2 m and 20.2 m, respectively, compared to choosing the
The experiment considered four path between the start and shortest-time path proposed by Google Maps.
target points: optimal path, suboptimal feasible path, vl

infeasible paths. The HPL was computed from experimental o CTABLEl PaTHs 14

data and compared for all paths. To account for GPS satellite FRFORMANCELOMPARISON OFFATHS -~

motio.n, a N_ATLAB—based parser was developed to generate bath Length Trg\r/ﬁése Average  Maximum
satellite positions from online Receiver Independent Exge [m] minutes]  HPL [m]  HPL [m]

(RINEX) les. For a fair comparison, four driving campaigns

. Path 1
took place over four successive days: January 22-25, 2020. (infeasible, 9746 m 15 11.9 m 82.1m
The start time of the tests were chosen to be 9:23am, 9:19am gshortest time)
9:15am, and 9:11am to guarantee the same satellite congura  Path 2
tion at the beginning of each test [32]. The vehicle used GPS (optimal)
satellites to which there was a clear LOS, with the number of ~_ Path 3 14244 m 26 9.6 m 92.1m

used GPS satellites along the paths varying between 5 and 13. (in;ei;izle)
al

B. Experimental Results (suboptimal 10629 m 16 9.7m 69.1 m
feasible)

9631 m 17 9.9 m 61.9m

Fig. 4 shows the four paths along with the time spent
traversing each path. The path length, average HPL, and
maximum HPL for each path are tabulated in Table I. The V. CONCLUSION

proposed algorithm r_eturned I_Dath 2 as the optimal path andp;q paper proposed a framework for optimal integrity-
Path 4 as a subqptlmal feasible path. Paths 1_ and 3 WeEBhstrained ground vehicle path planning. The framewoek pr
returned as |nfe§3|ble paths, but.were traversed in therlexpg ribed the optimal path between start and target pointiewh
mgnt for comparison purposes, since Path 1 was chosen byéﬁgounting for both HPL and path length and guaranteeing
L_lblqwtous navigation sqftware Google Maps as the_ sherteﬁPL being upper bounded by a desired HAL. Experimental
tlmz patdh LO fIOHOW' while Palt-TPﬁ appeared attractive as jiq 1< were presented to validate the ef cacy of the pregos
produced t € owest average : framework, showing that choosing the optimal path reduced
The following may be concluded from these results: the average and maximum HPL by 2 m and 20.2 m, re-

The path lengths and traversed time of Path 1 and P&l ctively, compared to choosing the shortest-time patilew
2 were comparable. However, the HPL along Path jkioqucing a negligible additional path length.

violated the desired HAL and was returned as infeasible.
The smallest average HPL was experienced in Path 3.
However, the HPL along Path 1 violated the desired HAL

and was returned as infeasible. The authors would like to thank Sonya Ragothaman for her
Choosing the optimal path prescribed by the proposéeélp with the path planning engine and Kimia Shamaei for her
framework reduced the average and maximum HPL thelp with the data collection.
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