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Abstract—Path planning for a ground vehicle in an urban
environment is considered. The vehicle is equipped with a GPS
receiver and a road map. The vehicle desires to take the
shortest path to reach a target destination, while guaranteeing
that integrity monitoring-based measures are satis�ed along its
traversed path. A path planning algorithm is proposed that
yields the optimal path to follow as well as suboptimal feasible
paths. The integrity monitoring-based measure consideredin
this paper is the horizontal protection level (HPL), which refers
to the statistical bound around the vehicle that guaranteesthe
probability of the absolute position error exceeding a desired
threshold is not larger than the integrity risk. Experimental
results are presented showing that choosing the optimal path
from the proposed algorithm reduces the average and maximum
HPL by 2 m and 20.2 m, respectively, compared to choosing the
shortest-time path, while introducing a negligible additional path
length.

Index Terms—Navigation, ground vehicle, integrity, receiver
autonomous integrity monitoring, path planning, GPS.

I. I NTRODUCTION

The U.S. National Highway Traf�c Safety Administration
(NHTSA) reported that in 2018, there were more than 36,000
traf�c fatalities, 1.8 million injuries, and 6.7 million crashes
in the U.S. [1], with about 94% of crashes being attributed to
human error. Autonomous ground vehicles have the potential
to dramatically reduce vehicle collisions due to human error by
reducing the number of humans behind the driving wheel. For
reliable autonomous or semi-autonomous driving, the vehicle
needs to be equipped with extremely reliable and accurate
local and global sensing modalities to sense the surrounding
environment and localize the vehicle within a global map.
This cannot be achieved without continuously monitoring the
integrity of the navigation solution provided by the vehicle's
navigation system. Integrity monitoring refers to the ability of
the navigation system to provide timely warnings when the
information given by its on-board sensors is not trustworthy.
A high-integrity navigation system must be able to detect and
reject incorrect measurements [2].

The concept of integrity was �rst formalized in the �eld
of aviation, which is highly dependent on global navigation
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satellite systems (GNSS) [3]. Integrity monitoring can be
established through the GNSS navigation message to indicate
satellite anomalies, such as clock errors. However, this type of
integrity monitoring is not practical for real-time applications,
as it takes a few hours to identify and broadcast satellite
failure. As such, alternative methods have been developed for
real-time integrity monitoring. These methods can be catego-
rized into internal and external. On one hand, integrity can
be established using external methods, such as ground-based
augmentation systems (GBAS) or satellite-based augmentation
systems (SBAS) using reference receivers. On the other hand,
integrity can be established using internal methods, such
as receiver autonomous integrity monitoring (RAIM) using
redundant information present in the measurements. RAIM
inherently possesses desirable characteristics for ground-based
receivers, and its design �exibility is well suited for navigation
in urban environments. Moreover, RAIM can be used to
generate the integrity monitoring measures, such as protection
levels (PLs), which are statistical error bounds computed so
as to guarantee that the probability of the absolute position
error exceeding a certain threshold is smaller than or equalto
a target integrity risk [4].

GNSS satellite visibility degrades in deep urban canyons
and the received signals suffer from multipath and non-line-
of-sight (NLOS) conditions. To overcome the limitations of
GNSS, fusing GNSS receivers with other sensors [5]–[10]
and signals of opportunity (SOPs) [11]–[16] is commonplace.
Integrity monitoring for multi-sensor and multi-signal naviga-
tion systems has been the subject of numerous studies. This
includes the fusion of (i) GPS, inertial measurement units
(IMUs), wheel speed encoders, and cameras [17]; (ii) GPS
and map-matching [18], [19]; (iii) GPS and lidar [20]; (iv)
GNSS and IMU [21]; (v) GNSS, lidar, and IMU [22]; (vi)
SOPs and GNSS [23], [24]; and (vii) SOPs [25], [26].

Path planning has been considered in recent literature to
account for various sources of uncertainty (e.g., environmental
[27]–[29], sensing [30], [31], etc.). Predicting GNSS signal
power and availability was proposed in [32]–[34]. Such predic-
tions could be useful for path planning purposes. The objective
of path planning is to optimize a cost function, such as path
length or path duration between a start and a target destination.
Path planning to optimize the path length, while taking into
account the accuracy of the vehicle's estimated position from



GNSS and SOPs has been considered [35]–[38]. However,
to the author's knowledge, path planning in the context of
integrity monitoring has not been studied yet. To this end,
this paper considers path planning to minimize the vehicle's
path length, while upper bounding the vehicle's horizontal
protection level (HPL) to be less than a pre-de�ned threshold,
which is known as the horizontal alert limit (HAL). As such,
the proposed framework assures safe operation by prescribing
a path through which HPL is restricted to the largest allowable
error set by the integrity monitoring system.

This paper considers the following problem. A ground
vehicle equipped with a GPS receiver navigates in an urban
environment. The vehicle-mounted receiver makes pseudor-
ange measurements to multiple GPS satellites. The vehicle
is also equipped with a road map of the environment. The
path planning engine uses the road map to predict the HPL
at different locations of the path at different times. Giventhe
start and the target points, the path planning engine prescribes
a path that minimizes the vehicle's path length and HPL,
while satisfying the constraint of HPL being less than HAL.
The path planning engine also outputs other feasible paths
the vehicle could take. These feasible, suboptimal paths are
useful when the vehicle chooses not to follow the optimal
path, for example, to avoid traf�c jams due to construction or
emergency. For simplicity of this preliminary study, this paper
does not consider GPS multipath or NLOS conditions.

The contributions of this paper are as follows. First, this
paper introduces a method to calculate HPL throughout all
possible paths using the road map. Second, this paper proposes
a path planning method that is based on Dijkstra's algorithm
[39], which considers the path length as well as integrity mon-
itoring constraints. Third, experimental results are presented
validating the ef�cacy of the proposed framework. It is shown
that choosing the optimal path prescribed by the proposed
framework reduces the average and maximum HPL by 2 m and
20.2 m, respectively, compared to choosing the shortest-time
path, while introducing a negligible additional path length.

The paper is organized as follows. Section II presents
the navigation framework and the HPL calculation. Section
III presents a step-by-step summary to extract the required
information from the road map and formulates the vehicle path
planning algorithm. Section IV presents experimental results
and analyzes the performance of the proposed framework.
Section V gives concluding remarks.

II. NAVIGATION FRAMEWORK AND HPL CALCULATION

A. Navigation Framework

This subsection formulates the navigation framework. The
environment is assumed to compriseM GPS satellites, to
which the vehicle-mounted receiver makes pseudorange mea-
surements, denotedf zGPS m gM

m =1 . These measurements are
fused through a weighted nonlinear least-squares (WNLS)
estimator to estimate the receiver's state vectorx r ,�
r r

T ; c�t r
� T

, wherec is the speed of light,r r , [xr ; yr ; zr ]T

is the receiver's position, and�t r is the receiver's clock bias.

The pseudoranges made by the vehicle's mounted receiver
on them-th GPS satellite are given by

z0
GPS m

(k) = kr r (k) � r GPS m (k)k
2

+ c � [�t r (k) � �t GPS m (k)] + vGPS m (k);

wherek is the time-step;z0
GPS m

, zGPS m � c � �t iono � c �
�t tropo ; r GPS m and �t GPS m are the position and clock bias
states of them-th GPS satellite, respectively;�t iono and�t tropo

are the ionospheric and tropospheric delays, respectively; and
vGPS m is the measurement noise, which is modeled as a zero-
mean white Gaussian random sequence with variance� 2

GPS m
.

The vector of measurements to allM satellites is de�ned
by

z ,
�
z0

GPS 1
; : : : ; z0

GPS M

� T
:

The vehicle-mounted receiver's state vector is estimated using
WNLS. The measurement model is linearized according to

� z = H � x r + v;

where� z , z � ẑ is the difference between the measurement
vectorz and its estimatêz, � x r , x r � x̂ r is the difference
between the receivers's state vectorx r and its estimatêx r ,
andv , [vGPS 1 ; : : : ; vGPS M ]T . The measurement Jacobian is

H ,
2

6
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� c(elGPS 1)s(azGPS 1) � c(elGPS 1)c(azGPS 1) � s(elGPS 1) 1
...

...
...

...
� c(elGPSM )s(azGPSM ) � c(elGPSM )c(azGPSM ) � s(elGPSM ) 1

3

7
5 ;

where elGPS m and azGPS m are the elevation and azimuth
angles of them-th GPS satellites, respectively, expressed in
the East, North, Up (ENU) local coordinate frame, centered at
the receiver's position. In the above equation,c(�) and s(�)
denote thecos and sin functions, respectively. Finally, the
weighting matrix in the WNLS is chosen as the inverse of
the measurement noise covariance

R = diag
�
� 2

GPS 1
; : : : ; � 2

GPS M

�
;

wherediag(�) denotes a diagonal matrix.

B. HPL Calculation

The RAIM algorithm provides the user with an estimate of
the con�dence in the position information via HPL. Moreover,
RAIM detects the presence of a fault in the measurement by
formulating a hypothesis test on a residual test statistic.In
[40], it was shown that the RAIM-based test statistic follows
a central and noncentral chi-squared distributions under fault-
free and faulty operations, respectively.

In order to calculate the position error, RAIM establishes a
mapping between the error in the position domain and in the
test statistic domain. This mapping is called “slope” [2] and
is formulated according to

slopei =

p
(B 1i )2 + ( B 2i )2 �

p
R iip

Sii
;



whereB ,
�
H T R � 1H

� � 1
H T R � 1, S , I � HB , and X ij

denotes the element ofi -th row andj -th column of a matrixX .
The slope is usually computed for each satellite individually,
denoted byslopei for the i -th GPS satellite. When the slopes
are large, the position error becomes more sensitive to the
error in the test statistic, making the RAIM system less likely
to detect a fault. Therefore, an important quantity to studyis
the maximum slope, denotedslopemax , to which the HPL is
proportional, i.e.,

HPL = slopemax

p
� det ; slopemax = max f slopei g

M
i =1 ;

where� det is the non-centrality of the test statistic chi-squared
distribution under a faulty operation that results in a pre-
de�ned probability of missed detectionPMD according to

PMD =
Z Th

0
f � 2

d ;� min
(� )d�; (1)

wheref � 2
d ;� min

represents the non-central chi-squared pdf with
d degrees of freedom and non-centrality parameter� min , and
Th is the threshold for the test statistic and is obtained from

PFA =
Z 1

Th

f � 2
d
(� )d�; (2)

wherePFA is the probability of false alarm andf � 2
d

is the test
statistic chi-squared pdf under fault-free condition [26].

III. PATH PLANNING

A. Road Map Generation

To extract road data for path planning, a digital map has
been used, which covers the city of Irvine, California, USA,
and is developed based on the Open Street Map (OSM)
database [41]. OSM is built by a community of mappers
that contribute and maintain roads, trails, and railway stations
information. A MATLAB -based parser was developed to ex-
tract the road coordinates. The elevation pro�le of the road
was obtained using Google Earth [42]. The MATLAB -based
parser outputted the coordinates of the nodes (i.e., the street
junctions), the roads, and the connectivity matrix� , which is
de�ned according to

� i;j =

(
1 if there exists a road between nodesi and j
0 otherwise

Fig. 1 summarizes the steps to extract path planning related
data from a digital map. Fig. 1(a) shows the navigation
environment. Fig. 1(b) demonstrates the same area in OSM
database, which is downloadable from the OSM website [41].
Fig. 1(c)–(e) show the steps to process the map data and
to extract the nodes, roads, and the connectivity matrix. Fig.
1(f) show the extracted nodes and road overlaid on the map.
This area contains 8,368 nodes and 1,472 roads, which are
illustrated with red circles and blue lines, respectively.An
example of the path between two sample points is depicted
in Fig. 1 (f). This path,� , contains 8 nodes, labeled as

� = f 464; 236; 112; 234; 30; 31; 114; 118g:

Finally, Fig. 1(g) illustrates the connectivity between different
nodes.

(b)

(a)

Export the road data from the
digital map

(c)

(.osm� le)

(d)

Extract the node
coordinates and roads
with "highway" tag

in the database

(e)

Construct the
connectivity

(f) (g)

matrix

Start
Target
Path

Fig. 1. Steps to extract path planning related data from a digital map: (a)
The navigation environment, (b) OSM digital map, (c) exporting the “.osm”
�le, which contains road data, (d) MATLAB -based parser to extract nodes
and roads data from the “.osm” �le, (e) processing the digital map, including
constructing the connectivity matrix, (f) the extracted nodes and road overlaid
on the map, and (g) the connectivity matrix.

B. Path Planning Engine

The path planning generation step prescribes an optimal
path for the vehicle to follow. This subsection describes the
steps to determine the optimal path between a start and target
nodes on the digital map. The optimal path is one that accounts
for the shortest path length and for the HPL. To account for
both HPL and path length, the optimization cost function is
chosen to be the sum of the HPL along the path, multiplied
by the distance between two adjacent nodes. The distance
is explicitly considered in the cost function because only
including HPL could result in lengthy paths, e.g., paths that
require the vehicle to leave and re-enter the urban environment.
Fig. 2 summarizes the block diagram of the path planning
engine with the corresponding inputs and outputs.

Formally, a path from the start to the target nodes is denoted
� 2 P , whereP is the set of all paths. The path� is composed
of a sequence of nodes indices between the start node index
ps and the targetpg, namely � = f ps; p1; p2; : : : ; pgg. The
optimization problem is expressed as

minimize
� 2P

X

p2 �

dist (p) � HP L (p; t) (3)

subject to HP L (p; t) � HAL

wheredist (p) is the length of the road network between node
p and its adjacent node andHP L (p; t) is the predictedHP L
in nodep at timet.
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Fig. 2. The block diagram of path planning engine with the corresponding
inputs and outputs.

The optimization problem in (3) resembles the problem of
�nding the shortest path in a weighted graph, in which the
roads are the edges of the graph and the cost function

f (�; � ) =
X

p2 P ( �;� )

dist (p) � HP L (p; t); (4)

determines the weight of the edge that connects the node� to
� . Based on the constraints in (3), ifHP L (p; t) exceeds HAL
for p 2 P(�; � ), then the edge is removed from the graph. To
solve the optimization problem expressed in (3), Dijkstra's
algorithm is employed, which is a classic algorithm to �nd
the shortest path between two arbitrary nodes of a weighted
graph. Dijkstra's algorithm is readily implementable, performs
stably, and has acceptable complexity. The proposed algorithm
is implemented as follows. Assume that the vehicle is driving
in a region consisting ofn nodes andw roads. This region can
be modeled by a simple graphG = ( n; w), which consists of
n nodes andw edges. The path planning cost functionf (�; � )
assigns a non-negative real number weight to the edge from
� to the� in G. De�ne s to be the start node from which the
vehicle begins driving,g to be the target node, andd(g) to
be the weight related to the path froms to g. Let S denote
the set of visited nodes by the vehicle andV denote the set
of unvisited nodes. Given a path� in G determined by the
algorithm, � p denotes the predecessor of node� . The path
planning is initialized as follows

� d(s) = 0
� For each node� adjacent tos, set d(� ) = f (s; � ) and

� p = s
� For each node� such that� 6= s and � is not adjacent

to s, setd(� ) = 1
� S = f sg
Next, the path planning algorithm executes the steps out-

lined in Algorithm 1.

IV. EXPERIMENTAL RESULTS

This section evaluates the ef�cacy of the proposed path
planning algorithm experimentally on a ground vehicle.

Algorithm 1: Path Planning Algorithm

Input: G, s, g, S, andf (�; � )
Output: d(g) and � (g)

1 Find � 2 V that minimizesd(� )
2 For each� adjacent to�
3 If d(� ) + f (�; � ) < d (� ),
4 d(� ) = d(� ) + f (�; � )
5 � p = �
6 End if
7 End for
8 V  V � f � g
9 S  S + f � g

10 If S 6= V,
11 Goto Step 1
12 End if

A. Experimental Setup and Scenario Description

A vehicle was equipped with a Septentrio AsteRx-i V®

integrated GNSS-IMU module, which is equipped with a dual
antenna, multi-frequency GNSS receiver and a Vectornav VN-
100 micro-electromechanical system (MEMS) IMU. This in-
tegrated GNSS-IMU system was used to produce the vehicle's
ground truth path. The GNSS receiver also produced GPS
pseudorange measurements, which were used to construct the
HPL as discussed in Subsection II-B. The experimental setup
is shown in Fig. 3.

GNSS antenna

Integrated
GNSS-IMU

VN-100 IMU

Multi-frequency
GNSS antenna
Multi-frequency

module
AsteRx-i

Storage

Fig. 3. Experimental setup. Vehicle used to conduct the experiment, which
was equipped with the AsteRx-i V® GNSS-IMU module and a laptop for
storage and processing.

The experiment was conducted in California, USA. The start
point was chosen in Costa Mesa, California, USA, while the
target point was chosen in Irvine, California, USA. The RAIM



Start point

Path 1 (shortest traversed time)
Traverse time: 15 minutes

Traverse time: 16 minutes
Path 4

Costa Mesa, California

Start time: 9:23am, 1/22/2020

Path 2 (prescribed path)
Traverse time: 17 minutes

Start time: 9:19am, 1/23/2020

Path 3
Traverse time: 26 minutes

Start time: 9:15am, 1/24/2020

Path 4
Traverse time: 16 minutes

Start time: 9:11am, 1/25/2020

Fig. 4. The experimental results along the shortest path, the prescribed path, and two other possible paths between the start and target points. For a fair
comparison, four drive tests took place in four successive days and the start time of the tests were chosen properly to guarantee the same satellite con�guration
at the beginning of each test.

settings werePMD = PFA = 0 :005 and HAL = 70 m.
The experiment considered four path between the start and
target points: optimal path, suboptimal feasible path, andtwo
infeasible paths. The HPL was computed from experimental
data and compared for all paths. To account for GPS satellite
motion, a MATLAB -based parser was developed to generate
satellite positions from online Receiver Independent Exchange
(RINEX) �les. For a fair comparison, four driving campaigns
took place over four successive days: January 22–25, 2020.
The start time of the tests were chosen to be 9:23am, 9:19am,
9:15am, and 9:11am to guarantee the same satellite con�gura-
tion at the beginning of each test [32]. The vehicle used GPS
satellites to which there was a clear LOS, with the number of
used GPS satellites along the paths varying between 5 and 13.

B. Experimental Results

Fig. 4 shows the four paths along with the time spent
traversing each path. The path length, average HPL, and
maximum HPL for each path are tabulated in Table I. The
proposed algorithm returned Path 2 as the optimal path and
Path 4 as a suboptimal feasible path. Paths 1 and 3 were
returned as infeasible paths, but were traversed in the experi-
ment for comparison purposes, since Path 1 was chosen by the
ubiquitous navigation software Google Maps as the shortest-
time path to follow, while Path 3 appeared attractive as it
produced the lowest average HPL.

The following may be concluded from these results:
� The path lengths and traversed time of Path 1 and Path

2 were comparable. However, the HPL along Path 1
violated the desired HAL and was returned as infeasible.

� The smallest average HPL was experienced in Path 3.
However, the HPL along Path 1 violated the desired HAL
and was returned as infeasible.

� Choosing the optimal path prescribed by the proposed
framework reduced the average and maximum HPL by

2 m and 20.2 m, respectively, compared to choosing the
shortest-time path proposed by Google Maps.

TABLE I
PERFORMANCECOMPARISON OFPATHS 1–4

Path Length
[m]

Traverse
time

[minutes]

Average
HPL [m]

Maximum
HPL [m]

Path 1
(infeasible,

shortest time)
9746 m 15 11.9 m 82.1 m

Path 2
(optimal) 9631 m 17 9.9 m 61.9 m

Path 3
(infeasible) 14244 m 26 9.6 m 92.1 m

Path 4
(suboptimal

feasible)
10629 m 16 9.7 m 69.1 m

V. CONCLUSION

This paper proposed a framework for optimal integrity-
constrained ground vehicle path planning. The framework pre-
scribed the optimal path between start and target points, while
accounting for both HPL and path length and guaranteeing
HPL being upper bounded by a desired HAL. Experimental
results were presented to validate the ef�cacy of the proposed
framework, showing that choosing the optimal path reduced
the average and maximum HPL by 2 m and 20.2 m, re-
spectively, compared to choosing the shortest-time path, while
introducing a negligible additional path length.

VI. A CKNOWLEDGMENT

The authors would like to thank Sonya Ragothaman for her
help with the path planning engine and Kimia Shamaei for her
help with the data collection.



REFERENCES

[1] USA Department of Transportation, National Highway Traf�c
Safety Administration. (2017) Facts + statistics: Highwaysafety.
[Online]. Available: https://www.iii.org/fact-statistic/facts-statistics-
highway-safety#Traf�c%20Deaths,%202009-2018

[2] N. Zhu, J. Marais, D. Betaille, and M. Berbineau, “GNSS position in-
tegrity in urban environments: A review of literature,”IEEE Transactions
on Intelligent Transportation Systems, pp. 1–17, January 2018.

[3] B. Pervan, J. Blanch, and P. Enge, “Evaluation of signal in space error
bounds to support aviation integrity,”NAVIGATION, Journal of the
Institute of Navigation, vol. 57, no. 2, pp. 101–113, 2010.

[4] S. Bhattacharyya and D. Gebre-Egziabher, “Kalman �lter-based RAIM
for GNSS receivers,”IEEE Transactions on Aerospace and Electronic
Systems, vol. 51, no. 3, pp. 2444–2459, July 2015.

[5] A. Soloviev, “Tight coupling of GPS, INS, and laser for urban naviga-
tion,” IEEE Transactions on Aerospace and Electronic Systems, vol. 46,
no. 4, pp. 1731–1746, October 2010.

[6] K. Kozak and M. Alban, “Ranger: A ground-facing camera-based
localization system for ground vehicles,” inProceedings of IEEE/ION
Position, Location, and Navigation Symposium, April 2016, pp. 170–
178.

[7] A. Hata and D. Wolf, “Feature detection for vehicle localization in urban
environments using a multilayer Lidar,”IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 2, pp. 420–429, February 2016.

[8] M. Atia, A. Hilal, C. Stellings, E. Hartwell, J. Toonstra, W. Miners,
and O. Basir, “A low-cost lane-determination system using GNSS/IMU
fusion and HMM-based multistage map matching,”IEEE Transactions
on Intelligent Transportation Systems, vol. 18, no. 11, pp. 3027–3037,
November 2017.

[9] M. Maaref, J. Khalife, and Z. Kassas, “Lane-level localization and
mapping in GNSS-challenged environments by fusing lidar data and
cellular pseudoranges,”IEEE Transactions on Intelligent Vehicles, vol. 4,
no. 1, pp. 73–89, March 2019.

[10] Z. Kassas, M. Maaref, J. Morales, J. Khalife, and K. Shamaei, “Robust
vehicular localization and map-matching in urban environments with
IMU, GNSS, and cellular signals,”IEEE Intelligent Transportation
Systems Magazine, 2019, accepted.

[11] C. Yang and T. Nguyen, “Tracking and relative positioning with mixed
signals of opportunity,”NAVIGATION, Journal of the Institute of Navi-
gation, vol. 62, no. 4, pp. 291–311, December 2015.

[12] J. Morales, J. Khalife, and Z. Kassas, “Opportunity foraccuracy,”GPS
World Magazine, vol. 27, no. 3, pp. 22–29, March 2016.

[13] M. Driusso, C. Marshall, M. Sabathy, F. Knutti, H. Mathis, and
F. Babich, “Vehicular position tracking using LTE signals,” IEEE Trans-
actions on Vehicular Technology, vol. 66, no. 4, pp. 3376–3391, April
2017.

[14] Z. Kassas, J. Khalife, K. Shamaei, and J. Morales, “I hear, therefore
I know where I am: Compensating for GNSS limitations with cellular
signals,” IEEE Signal Processing Magazine, pp. 111–124, September
2017.

[15] K. Shamaei, J. Khalife, and Z. Kassas, “Exploiting LTE signals for
navigation: Theory to implementation,”IEEE Transactions on Wireless
Communications, vol. 17, no. 4, pp. 2173–2189, April 2018.

[16] K. Shamaei and Z. Kassas, “LTE receiver design and multipath analysis
for navigation in urban environments,”NAVIGATION, Journal of the
Institute of Navigation, vol. 65, no. 4, pp. 655–675, December 2018.

[17] R. Toledo-Moreo, D. Betaille, and F. Peyret, “Lane-level integrity
provision for navigation and map matching with GNSS, dead reckoning,
and enhanced maps,”IEEE Transactions on Intelligent Transportation
Systems, vol. 11, no. 1, pp. 100–112, March 2010.

[18] N. Velaga, M. Quddus, A. Bristow, and Y. Zheng, “Map-aided integrity
monitoring of a land vehicle navigation system,”IEEE Transactions on
Intelligent Transportation Systems, vol. 13, no. 2, pp. 848–858, June
2012.

[19] T. Binjammaz, A. AlBayatti, and A. Alhargan, “GPS integrity monitor-
ing for an intelligent transport system,” inProceedings of Workshop on
Positioning, Navigation and Communication, January 2013, pp. 1–6.

[20] A. Kanhere and G. Gao, “Integrity for GPS-LiDAR fusion utilizing a
RAIM framework,” in Proceedings of ION GNSS Conference, September
2018, pp. 3145–3155.

[21] T. Needham and M. Braasch, “Gravity model error considerations
for high-integrity GNSS-aided INS operations,” inProceedings of

IEEE/ION Position, Location and Navigation Symposium, 2018, pp.
822–832.

[22] A. Hassani, N. Morris, M. Spenko, and M. Joerger, “Experimental
integrity evaluation of tightly-integrated IMU/LiDAR including return-
light intensity data,” inProceedings of ION GNSS Conference, Septem-
ber 2019, pp. 2637–2658.

[23] M. Maaref, J. Khalife, and Z. Kassas, “Opportunistic integrity monitor-
ing for enhanced UAV safety,”IEEE Aerospace and Electronics Systems
Magazine, 2019, submitted.

[24] M. Maaref, J. Khalife, and Z. Kassas, “Enhanced safety of autonomous
driving by incorporating terrestrial signals of opportunity,” in Proceed-
ings of IEEE International Conference on Acoustics, Speechand Signal
Processing, May 2020, accepted.

[25] M. Maaref and Z. Kassas, “Measurement characterization and au-
tonomous outlier detection and exclusion for ground vehicle navigation
with cellular signals,”IEEE Transactions on Intelligent Vehicles, 2019,
accepted.

[26] M. Maaref and Z. Kassas, “Autonomous integrity monitoring for vehic-
ular navigation with cellular signals of opportunity and anIMU,” IEEE
Transactions on Intelligent Transportation Systems, 2020, submitted.

[27] Z. Kassas, A. Arapostathis, and T. Humphreys, “Greedy motion planning
for simultaneous signal landscape mapping and receiver localization,”
IEEE Journal of Selected Topics in Signal Processing, vol. 9, no. 2, pp.
247–258, March 2015.

[28] Z. Kassas and T. Humphreys, “Receding horizon trajectory optimiza-
tion in opportunistic navigation environments,”IEEE Transactions on
Aerospace and Electronic Systems, vol. 51, no. 2, pp. 866–877, April
2015.

[29] A. Nowak, “Dynamic GNSS mission planning using DTM for precise
navigation of autonomous vehicles,”Journal of Navigation, pp. 483–
504, May 2017.

[30] A. Shem, T. Mazzuchi, and S. Sarkan, “Addressing uncertainty in
UAV navigation decision-making,”IEEE Transactions on Aerospace and
Electronic Systems, vol. 44, no. 1, pp. 295–313, January 2008.

[31] G. Zhang and L. Hsu, “A new path planning algorithm usinga GNSS
localization error map for UAVs in an urban area,”Journal of Intelligent
and Robotic Systems, vol. 94, pp. 219–235, 2019.

[32] S. Saab and Z. Kassas, “Power matching approach for GPS coverage
extension,” IEEE Transactions on Intelligent Transportation Systems,
vol. 7, no. 2, pp. 156–166, June 2006.

[33] L. Wang, P. Groves, and M. Ziebart, “Multi-constellation GNSS per-
formance evaluation for urban canyons using large virtual reality city
models,”Journal of Navigation, vol. 65, pp. 459–476, 2012.

[34] J. Isaacs, A. Irish, F. Quitin, U. Madhow, and J. Hespanha, “Bayesian
localization and mapping using GNSS SNR measurements,” inProceed-
ings of IEEE/ION Position, Location, and Navigation Symposium, May
2014, pp. 445–451.

[35] J. Isaacs, C. Magee, A. Subbaraman, F. Quitin, K. Fregene, A. Teel,
U. Madhow, and J. Hespanha, “GPS-optimal micro air vehicle naviga-
tion in degraded environments,” inProceedings of American Control
Conference, June 2014, pp. 1864–1871.

[36] S. Ragothaman, M. Maaref, and Z. Kassas, “Autonomous ground vehicle
path planning in urban environments using GNSS and cellularsignals
reliability maps – part I: Models and algorithms,”IEEE Transactions on
Aerospace and Electronic Systems, 2018, submitted.

[37] A. Shetty and G. Gao, “Predicting state uncertainty forGNSS-based
UAV path planning using stochastic reachability,” inProceedings of ION
GNSS Conference, 2019, pp. 131–139.

[38] S. Ragothaman, M. Maaref, and Z. Kassas, “Multipath-optimal UAV
trajectory planning for urban UAV navigation with cellularsignals,”
in Proceedings of IEEE Vehicular Technology Conference, September
2019, pp. 1–6.

[39] D. Johnson, “A note on Dijkstra's shortest path algorithm,” Journal of
the Association for Computing Machinery, vol. 20, no. 3, pp. 385–388,
July 1973.

[40] A. Grosch, O. Crespillo, I. Martini, and C. Gunther, “Snapshot residual
and Kalman �lter based fault detection and exclusion schemes for robust
railway navigation,” inProceedings of European Navigation Conference,
May 2017, pp. 36–47.

[41] Open Street Map foundation (OSMF). [Online]. Available:
https://www.openstreetmap.org

[42] Google Earth, https://www.google.com/earth/.


